La chimica (da kemà, il libro dei segreti dell’arte egizia, da cui l’arabo “al-kimiaa” “الكيمياء”) è la scienza che studia la composizione della materia ed il suo comportamento in base a tale composizione[2], definita anche come “la scienza centrale” (in inglese “central science”) perché connette le altre scienze naturali, come l’astronomia, la fisica, le scienze dei materiali, la biologia e la geologia.[3][4]
La chimica inorganica si occupa dello studio dei composti inorganici, ovvero dei composti non formati da atomi di carbonio (anche se in realtà una ristretta classe di composti del carbonio sono considerati inorganici)[N 6]. Essa tratta lo studio del legame chimico e della simmetria delle molecole; si sofferma sulla caratterizzazione strutturale ed energetica dei solidi cristallini e di quelli metallici. In modo sistematico viene descritta la chimica degli elementi, raggruppando gli elementi chimici in base ai gruppi della tavola periodica. Vengono studiate le reazioni di ossido-riduzione, acido-base e la sintesi e caratterizzazione dei composti di coordinazione e dei composti metallorganici (contenenti un legame metallo-carbonio)[2]. Infine la chimica bioinorganica si occupa del ruolo degli elementi metallici nei processi vitali[11].
La chimica organica studia i composti del carbonio. La sistematica raggruppa le classi di composti organici in base alla presenza di determinati gruppi funzionali, studiandone le proprietà chimico-fisiche, le metodologie di sintesi e le reazioni caratteristiche. La stereochimica e i meccanismi di reazione sono un ambito di studio fondamentale in chimica organica. Nell’ambito di questa disciplina rientrano anche i composti aromatici, composti ciclici dotati di particolare stabilità, e biomolecole quali carboidrati, amminoacidi, proteine, lipidi e acidi nucleici (DNA e RNA). I polimeri organici sono una variegata classe di composti di elevato interesse industriale e con diverse applicazioni pratiche. I metodi fisici applicati alla chimica organica (NMR, spettroscopia IR, spettrometria di massa, spettroscopia UV) consentono il riconoscimento dei principali gruppi funzionali e della struttura molecolare.
La chimica fisica si propone di studiare e descrivere le reazioni e i fenomeni chimici utilizzando le metodologie e gli strumenti propri della fisica. Vengono studiate le fasi della materia e le transizioni di fase, ponendo enfasi sulle leggi che governano lo stato gassoso, sulla struttura dei solidi cristallini e sui diagrammi di fase. La termodinamica viene affrontata in modo dettagliato così come le sue implicazioni nell’ambito delle reazioni chimiche (termochimica), arrivando a stabilire la spontaneità o meno di una reazione in base al calcolo dell’energia libera di Gibbs di reazione. Analogamente vengono analizzati i fattori in grado di influenzare l’equilibrio chimico e la termodinamica di miscele e soluzioni. Partendo dalle basi della meccanica quantistica, si giunge a descrivere il legame chimico in modo rigoroso su basi matematiche.
Appositi modelli risultano utili nello studio del potenziale dovuto alle interazioni intermolecolari (legami chimici secondari). Dalla struttura atomica si passa alla struttura molecolare, determinata applicando l’approssimazione di Born-Oppenheimer. La spettroscopia e le varie tecniche spettroscopiche vengono trattate evidenziandone i fondamenti fisici, piuttosto che le applicazioni pratiche. Altro campo di studio della chimica fisica è rappresentato dai fenomeni di trasporto. L’elettrochimica si occupa dello studio dell’interconversione tra energia chimica ed energia elettrica e di tutto ciò che ne viene implicato. La cinetica chimica si occupa del calcolo della velocità di reazione e della formulazione dei singoli processi elementari di cui si compone una reazione (meccanismi di reazione), mentre la dinamica molecolare applica i principi della dinamica ai sistemi atomici e molecolari. Infine la fotochimica studia l’influenza della luce sulla reattività chimica.
La chimica analitica applica un insieme di tecniche, strumentali e non, allo scopo di riconoscere e quantificare un dato analita. Nello specifico l’analisi qualitativa si occupa del riconoscimento della sostanza oggetto di indagine, mentre l’analisi quantitativa determina la quantità di sostanza presente in un dato campione. In passato l’analisi qualitativa era condotta manualmente in modo sistematico, sfruttando opportuni reattivi; oggigiorno le tecniche strumentali quali quelle spettroscopiche hanno soppiantato tale approccio sistematico e puramente manuale da parte dell’analista. Nell’ambito dell’analisi quantitativa invece convivono tecniche puramente affidate all’operatore, quali le classiche titolazioni, con svariate tecniche strumentali automatizzate. Queste ultime, come già detto, possono più comunemente essere spettroscopiche, cromatografiche, elettroanalitiche, o termiche (come l’analisi termica differenziale, la calorimetria differenziale a scansione, la termogravimetria). Occorre sottolineare che la chimica analitica si occupa anche della corretta elaborazione statistica del dato analitico, nonché della qualità e affidabilità di tale dato.
La biochimica studia i composti e i processi chimici che contraddistinguono gli organismi viventi. Essa si occupa della biosintesi delle biomolecole, del loro ruolo e funzionalità biologica: acidi nucleici e informazione genetica, proteine, lipidi e carboidrati. Studia inoltre gli enzimi e la catalisi enzimatica, fino a giungere alla cinetica di Michaelis-Menten. La biochimica si concentra sugli aspetti chimici del metabolismo, del trasporto di ossigeno tramite emoglobina e mioglobina, della respirazione cellulare, della fotosintesi clorofilliana, dell’omeostasi e della trasduzione del segnale all’interno delle cellule. I canali di membrana e le pompe ioniche consentono il passaggio di ioni e molecole attraverso la membrana cellulare. La biosintesi degli anticorpi e la loro interazione con l’antigene ha un ruolo fondamentale nell’ambito della risposta immunitaria.
Altre discipline
Esistono numerosissime specializzazioni e discipline della chimica, che possono essere considerate parte delle discipline fondamentali e spesso anche parte di altre discipline scientifiche affini; ad esempio: la chimica farmaceutica, la chimica industriale, la chimica dei polimeri e delle macromolecole, la chimica degli alimenti, la chimica dello stato solido e delle superfici, l’astrochimica, la cosmochimica, l’elettrochimica, la geochimica, la chimica teorica, la citochimica, l’istochimica, la chimica clinica, la chimica nucleare, la radiochimica, la chimica delle radiazioni, la chimica metallorganica, la stereochimica, la chimica ambientale, la chimica verde, la fotochimica, la sonochimica, la chimica del suolo, la chimica dell’atmosfera, la chimica radiofarmaceutica, l’aerotermochimica, la chimica del restauro, la chimica dei beni culturali, la strutturistica chimica, la magnetochimica, la chimica quantistica, la femtochimica, la chimica dei colloidi, la chimica delle interfasi, la chimica combinatoria, la chimica computazionale, la chimica matematica, la chemioinformatica, la chemiometria, la chimica dei materiali, la chimica del cemento, la chimica dolce, la chimica supramolecolare, la nanochimica.